Sunday, September 19, 2021

CAD Practice: Stress/Modal Simulation

This weekend I wanted to explore the simulation options within Fusion 360 since I had never used them before. I decided to take the layout from a previous class HW question since I already had the model in Fusion.

Folded-flexure comb drive resonator.

Above is a folded-flexure comb drive MEMS resonator, although modeled in Fusion in millimeters instead of microns. It's a very well studied design, where the resonance frequency is mainly determined by the shuttle mass and the spring constants of the folded-flexure. I though this would be a good test since I know the equations for the spring constants of these beams and have done the analysis for these devices before.

How these devices normally work is that the center moving mass is set to a certain DC voltage, and then an AC signal is applied to one of the side combs. When the AC signal's frequency matches the resonance frequency of the center mass, the center mass will begin to oscillate significantly and the teeth in the combs will slide past each other, causing a change in capacitance at the other side (the output port). The change in capacitance will induce a current at the output comb that can be sensed, and it will have maximum amplitude at the resonant frequency.

Saturday, September 4, 2021

CAD Practice: Pencil Cup

Continuing with last weekend's practice, I modeled a slightly easier object for today: a pencil holder cup. 

Orthographic 3/4 view.

Orthographic side view.


It's effectively a cylinder so my main method of building this was with revolved profiles and circular patterns. The top and bottom lips were created as 2D profiles at the right radius away, and then revolved about the vertical axis. Nothing too special for these.